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Are Prediction Markets Bayesian?

Introduction

Probabilities, in a Bayesian framework, refer to subjective beliefs about the state

of the world. Bayesian agents update these beliefs in response to new information

according to specific rules. If prediction market prices were to evolve differently from

the subjective probabilities of a Bayesian agent, then the common interpretation of

prediction market prices as “probabilities,” in the Bayesian sense, would be faulty. This

makes the correct interpretation of prediction market prices as much an empirical

question as a philosophical one.

We derive empirically-detectable features that prediction markets would exhibit if

their contract prices were subjective probabilities. Then, using data from the Intrade

Archive, we analyze the extent to which real-world prediction markets exhibit those

features.

Literature Review

Prediction markets are a type of financial market where traders buy and sell

contracts that function as bets on future events. In their simplest form, these contracts

are converted into a single dollar if a certain prespecified event occurs and become

worthless if the event does not occur (Oliven and Reitz, 2004). Intuitively, the price at

which a contract trades should have a positive relationship with the likelihood of its

associated event. Market participants who assign a higher probability to an event should

be willing to bid more for contracts whose payout hinges on that event. Conversely,

cheaper contracts should indicate that market participants view the event as less likely

to occur. One could thus interpret prices in a prediction market as “probabilities” if

they behaved like the beliefs of a Bayesian agent evolving over time. These exhibit

certain identifiable features—in particular, a Bayesian agent’s beliefs should be a

martingale with respect to the evidence uncovered at each time step (Aldous, 2013). It

is possible to check whether this is true at various times before contracts’ maturity

dates. However, the literature to date has focused on different considerations.
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One such consideration is whether prediction markets produce probability

estimates synthesized from the information held by market participants. In one of the

earliest published papers on the Iowa Electronic Markets—the very first application of a

prediction market mechanism—Forsythe, Nelson, Neumann, and Wright (1992) find

that the market outperformed opinion polls in forecasting the outcome of the 1988

presidential election, and hypothesize that this is only due to the existence of a subset

of traders who are free of judgment bias. The fact that many traders didn’t possess this

property did not seem to make the Iowa Electronic Markets less effective. Because of

this, Forsythe et al. (1992) argue their findings support what Smith (1982) terms the

“Hayek Hypothesis,” which is the idea that markets can function well even if the

participants have very limited knowledge. Many participants may be ignorant, but the

market’s “beliefs” can nevertheless be accurate.

This separation between the beliefs of a market’s participants and the “beliefs” of

the market itself—with the latter being represented by the price of a contract in the

prediction market—is commonplace in the literature. Wolfers and Zitzewitz (2004)

provide an introductory overview of prediction markets and explicitly describe the price

of a contract as equivalent to the probability of its associated event, suggesting that

such probabilities will be highly accurate even with very few market participants.

However, others disagree. Manski (2006), in one of the first formal analyses of

price determination in a prediction market, constructs a model of prediction markets

where the contract price is not the mean probability which participating traders would

assign to the event’s occurrence, but nevertheless yields a bound on the mean

probability. He also finds that under this model, traders’ knowledge of the current

contract price does not change the equilibrium price. If this analysis is correct, it would

be a mistake to conflate the contract price with the probability of a future event.

Wolfers and Zitzewitz (2006) retort by producing a model where logarithmic utility

yields a contract price equivalent to the mean belief among traders. While Forsythe et

al. (1992) focuses on the problem of information synthesis, these debates are focused on

the problem of belief aggregation. According to those on either side, if traders assign
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subjective probabilities to events, then contracts whose payouts are dependent on those

events will have a price interpretable as a probability if and only if that price is a

successful aggregation of the traders’ subjective probabilities.

Another approach is to ignore the beliefs of market participants altogether. If the

market itself assigns subjective probabilities to outcomes, then knowledge of past prices

shouldn’t allow one to produce a more accurate estimate of the chance of a future event

than the present price alone. There have been some attempts to test this idea, but they

are few in number. Berg, Forsythe, Nelson and Reitz (2008) summarize evidence from

the Iowa Electronic Markets, showing that they yield predictions more accurate than

those of large-scale polling organizations, which would suggest that knowledge of

external information such as polls is already contained in the contract price.

Additionally, Leigh, Wolfers, and Zitzewitz (2003) find that prediction market prices do

not follow an easily predictable path, in that simple betting strategies based on past

prices don’t appear to yield opportunities for profit.

Berg and Rietz (2002), on the other hand, find less optimistic results. Their

analysis of the data from the Iowa Electronic Markets demonstrates that traders are

vulnerable to systematic overestimation and underestimation of the equilibrium

contract price in response to sudden new private information. This allows for trading

strategies that can exploit these biases when they occur. However, such trading

strategies remain simple, and can only exploit biases that have already been detected.

They do not come equipped with a way to determine when they should be employed.

Additional research by Huber and Hauser (2005) finds that smaller prediction market

contracts in Europe are systematically overpriced, which results in their failure to

outperform polls as is the case in the United States. However, this finding does not

extend to larger prediction market contracts and does not provide a concrete way that

an observer could correct for the bias in general.

Papers which go any further in trying to analyze the consistency of prediction

market contract prices with the behavior of Bayesian subjective probabilities are

practically nonexistent. Tziralis and Tatsiopoulos (2012) conduct a literature review of
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the entire field from 1990 to 2006, and classify all 155 papers published during that

period into distinct categories. A mere 26 are focused on the theoretical aspects of

prediction markets and, of those, only two are dedicated to the interpretation of

contract prices. A second literature review by Horn, Ivens, Ohneberg, and Brem (2014)

performs the same classification on all 318 articles published between 2007 and 2013

and finds that only 57 are theoretical works. A search through the listed articles reveals

that only one is dedicated to the interpretation of prices, where Keller, Mai, and Kros

(2011) claim that prediction market prices are different from probabilities. They argue

this can be explained by non-risk-neutral utility preferences and are more concerned

with how individuals’ subjective probabilities can be aggregated than with analyzing

whether a market’s beliefs evolve in a Bayesian manner.

These two literature reviews suggest that very little prior work has been done on

modelling prediction markets as Bayesian agents. A rare exception is the research of

Page and Clemens (2012), who analyze the calibration of prediction markets. They find

that prediction markets are reasonably well calibrated when a contract’s maturity date

draws near, but fall prey to significant biases for contracts which will be resolved far in

the future. This analysis is a special case of testing whether contract prices are

martingales with respect to the evidence uncovered at each time step—a uniquely

Bayesian characteristic. There is a distinct hole in the literature to be filled.

Theory

A martingale is a stochastic process where the conditional expectation of future

values, given all previous values, is equal to the present value. A Bayesian agent

believes that the subjective probabilities it assigns to a particular hypothesis will evolve

through time like a martingale. Equivalently, an agent that does not believe its own

beliefs will evolve through time like a martingale is not Bayesian.

Suppose an external observer took a record of how an agent updated its beliefs in

response to several sequences of evidence, but was prohibited from viewing that

evidence themselves. If the external observer were to detect empirical regularities in
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this record that are inconsistent with the agent believing its posterior will evolve like a

martingale, he or she could determine that the agent is non-Bayesian. This same

analysis applies to prediction markets. If their price data produce the same kinds of

empirical regularities, it would be inaccurate to describe them as Bayesian agents.

It is important to distinguish between martingales with respect to themselves, and

martingales with respect to another process. Let Ω denote a sample space. Then, a

stochastic process X : Z× Ω→ R is an integer-time martingale with respect to itself if,

for all n ∈ Z, the following properties hold:

• E(|Xn|) <∞

• E(Xn+1 | Xn, Xn−1, ...) = Xn.

Now let S be a set. A stochastic process X : Z× Ω→ R is an integer-time

martingale with respect to another stochastic process Y : Z× Ω→ S if, for all n ∈ Z,

the following properties hold:

• E(|Xn|) <∞

• E(Xn+1 | Yn, Yn−1, ...) = Xn.

Consider a Bayesian agent with prior I that observes evidence Ei at each discrete

time step i ∈ Z. For a hypothesis h, the Bayesian agent’s posterior probability of h with

respect to the evidence observed up until time t is

P(h | I, Et, Et−1, ...).

Denoting the probability measure induced by the prior as PI and the intersection

all evidence up to time t as ∧
i≤tEi, this becomes

PI(h |
∧
i≤t
Ei).

Indexing these posterior probabilities to the integers produces a martingale with

respect to the evidence so far observed by the Bayesian agent. The following properties

thus hold:
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• EI(|PI(h |
∧
i≤tEi)|) <∞

• EI(PI(h |
∧
i≤n+1 Ei) |

∧
i≤nEi) = PI(h |

∧
i≤nEi).

The first property follows directly from the fact that all probabilities fall between

0 and 1. The proof of the second martingale property is given below. For any n ∈ Z, we

have

EI(PI(h |
∧

i≤n+1
Ei) |

∧
i≤n

Ei) =
∫
En+1

PI(h | En+1,
∧
i≤n

Ei)PI(En+1 |
∧
i≤n

Ei)

=
∫
En+1

PI(h ∧ En+1 |
∧
i≤n

Ei)

= PI(h |
∧
i≤n

Ei).

This demonstrates that Bayesian agents believe their own posteriors will evolve

through time as a martingale. Furthermore, by a property of integer-time martingales,

the above equation holds for time steps greater than 1 into the future. For any k ∈ Z+,

EI(PI(h |
∧

i≤n+k
Ei) |

∧
i≤n

Ei) = PI(h |
∧
i≤n

Ei).

For an external observer, ignorant of both any elements of the process {En} or the

prior I, this fact isn’t very useful on its own. Fortunately, the external observer can use

the martingale properties to derive detectable features of a Bayesian agent’s updating

process.

First, consider that the probability P(h | I,∧i≤tEi) is a (potentially non-injective)

function of the intersection of I and all evidence up to time t. Denote this function f ,

so that

f(I ∩ (
⋂
i≤t
Ei)) = P(h | I,

∧
i≤t
Ei).

By a property of images and preimages, we have

I ∩ (
⋂
i≤t
Ei) ⊆ f−1(f(I ∩ (

⋂
i≤t
Ei)))

for any prior and any evidence observed. Therefore,

E(P(h | I,
∧

i≤n+k
Ei) | I,

∧
i≤n

Ei)

= E(P(h | I,
∧

i≤n+k
Ei) | I,

∧
i≤n

Ei,
∧
i≤n

P(h | I,
∧
j≤i

Ej)).
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No new information is gained by conditioning on the probability of previous

posteriors over and above that of the current evidence and prior. Substituting the above

into the second martingale property, this becomes

E(P(h | I,
∧

i≤n+k
Ei) | I,

∧
i≤n

Ei,
∧
i≤n

P(h | I,
∧
j≤i

Ej)) = P(h | I,
∧
i≤n

Ei).

Then, subtracting P(h | I,∧i≤nEi) from both sides,

E(P(h | I,
∧

i≤n+k
Ei)− P(h | I,

∧
i≤n

Ei) | I,
∧
i≤n

Ei,
∧
i≤n

P(h | I,
∧
j≤i

Ej)) = 0.

Suppose now that the external observer selects some finite set of previously

observed probabilities from the agent, all from at or before time period n. Denote this

set D. Then, applying the conditional expectation E(· | D) to both sides of the above

equation,

E(E(P(h | I,
∧

i≤n+k
Ei)− P(h | I,

∧
i≤n

Ei) | I,
∧
i≤n

Ei,
∧
i≤n

P(h | I,
∧
j≤i

Ej)) | D) = 0

and by the law of iterated expectations,

E(P(h | I,
∧

i≤n+k
Ei)− P(h | I,

∧
i≤n

Ei) | D) = 0. (1)

The external observer can make use of this above expression to test whether a

prediction market is a Bayesian agent, since the expectation is taken with respect to a

set of observable prices D. He or she need not know the evidence upon which the

prediction market has conditioned, nor its prior.

If, for all times that a set of prices D are observed, the difference between any two

prediction market prices some fixed distance from one another which both occur

chronologically after D has a mean of 0, then the prediction market data would be

consistent with the behavior of Bayesian updating. A special case of this idea is

calibration testing, where the distance is taken between a contract’s resolving price

(either 1 or 0) and its price at some fixed distance in the past.

Let C denote the set of all contracts, let pc,i denote the price of contract c at time

i away from the maturity date, and let qd denote the time between the contract price

evaluated at d ∈ D and at time n. Lastly, let TD denote the difference between the time
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of the first and last price in D. To compute an estimate of the left-hand side of

equation (1) we use a kernel type estimator, with beta kernels (denoted as Beta below)

set to a fixed concentration parameter and centered at each point in D:∑
c∈C

∑|c|−k−TD

i=1 (pc,i − pc,i+k)
∏
d∈D Beta(pc,i+k+qd

, d)∑
c∈C

∑|c|−k−TD

i=1
∏
d∈D Beta(pc,i+k+qd

, d)

If prediction markets are not Bayesian agents, there should exist some choice of

D, q, and k such that the above estimator is distant from zero.

Evidence

Intrade, one of the world’s largest prediction markets, was shut down in 2013.

Fortunately, Intrade’s market data were preserved for posterity. The Intrade Archive is

a collection of time series that correspond to individual prediction contracts, which

contain crucial market information recorded over a contract’s lifetime (e.g. closing

prices, trading volume per day). Panos Ipeirotis, the creator of the Intrade Archive and

a prediction market researcher, aggregated the data from all non-financial contracts into

a single repository and made them available to the public. It is these data which will be

used to test whether prediction markets behave as Bayesian agents.

The 17287 different time series in the repository originate between 2003 and 2013.

Not all are usable. The closing prices for each day are quoted in cents, and so their

values should range between 0 and 100. Some of the time series, however, display

pathological behavior, and contain contracts traded at least once for a price greater

than a dollar. Only 9 time series display this unusual behavior. For the purpose of this

analysis, these time series were removed.

A larger problem comes in the form of missing price data. 3378 time series possess

empty entries for their contract’s closing price at certain dates. This is a common

difficulty encountered in historical financial data. It is possible to interpolate between

recorded closing prices within the affected time series, but for the purpose of this

analysis they were removed entirely. Additionally, there is significant overlap between

different kinds of pathological time series–all those with closing prices greater than a

dollar also possessed incomplete closing price data.
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Lastly, some contracts were resolved or cancelled the same day they were issued,

and thus their associated time series have a length of zero. 6 contracts displayed this

property. The window in kernel regression has a finite, non-zero length, and so will

ignore these time series altogether. For this reason, zero-length time series were

retained, but will have no impact on the results of the analysis.

Removed time series tended to be heavily composed of missing or irregular data;

the mean percentage of missing or irregular data points in a time series that contained

missing or irregular data was 49%. This suggests that missing data are clustered among

a handful of files, rather than spread out among the entire repository.

After partitioning the repository into time series with incomplete or pathological

data and those without, summary statistics were collected for each. The results are as

follows:

DATA SET All time series Irregular/removed Retained

Number of time series 17287 3378 13909

Average length 117 days 153 days 108 days

Standard Deviation of Length 212 days 254 days 199 days

Minimum Length 0 days 1 day 0 days

Maximum Length 1937 days 1937 days 1886 days

The beta kernel accepts values between 0 and 1 as inputs. Since closing prices are

quoted in cents (and thus lie between 0 and 100), they were converted into fractions of a

dollar to be compatible with the beta kernel. No other pre-processing was performed on

the data.

Data Analysis

Prediction markets do not violate the properties of a Bayesian agent if equation

(1) holds. Testing whether this is the case requires computing an estimate of the

expected value and the variance of

[P(h | I,
∧

i≤n+k
Ei)− P(h | I,

∧
i≤n

Ei) | D]. (2)



ARE PREDICTION MARKETS BAYESIAN? 11

An estimate of the expected value of (2) can be computed from the data as

µ =
∑
c∈C

∑|c|−k−TD

i=1 (pc,i − pc,i+k)
∏
d∈D Beta(pc,i+k+qd

, d)∑
c∈C

∑|c|−k−TD

i=1
∏
d∈D Beta(pc,i+k+qd

, d)
,

and an estimate of the variance of (2) can be similarly computed as

σ2 =
∑
c∈C

∑|c|−k−TD

i=1 (pc,i − pc,i+k)2 ∏
d∈D Beta(pc,i+k+qd

, d)∑
c∈C

∑|c|−k−TD

i=1
∏
d∈D Beta(pc,i+k+qd

, d)
− µ2.

This requires the specification of values for k, q, and D, where k is the distance

between the two prices whose average difference is being tested, q is the distance

between the earlier of these two prices and the latest price in D, and D is the set of

prices conditioned upon.

Additionally, the above beta kernels utilize the mode-concentration

parameterization. For this analysis, a high concentration of 30 was selected, so as to

better avoid conditioning upon prices too distant from those in D. Each mode is set to

the value of d (the price conditioned upon).

The simplest test of whether (1) holds would be to compute the expected

deviation between a current price and the next day’s closing price, which corresponds to

k = 1 and q = 0. D will consist of all possible prices between 0 and 100 cents at 5-cent

intervals (i.e. 0, 0.05, 0.10, etc.). Due to the nature of kernel regression, it is not

possible to determine the size of the data set used to compute these expected

deviations, and so t-tests cannot be legitimately applied to the result. As a substitute,

each estimate is accompanied by a signal to noise ratio:

µ

σ

µ and σ refer to our point estimate of the expected value of (2) and its standard

deviation. A high signal to noise ratio indicates clear and predictable deviation of (2)

from zero, while a low signal to noise ratio indicates that either no such deviations can

be found or that deviations are difficult to predict.

The results of this test are displayed in the following two columns. The first

contains the point estimates µ for different starting prices, and the second contains the

corresponding signal to noise ratios.
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D µ µ
σ

0.0 0.01 0.1311

0.05 0.0041 0.0804

0.1 0.0016 0.0387

0.15 -0.0006 -0.0163

0.2 -0.002 -0.055

0.25 -0.0031 -0.0717

0.3 -0.004 -0.0789

0.35 -0.0048 -0.0829

0.4 -0.0057 -0.0872

0.45 -0.0066 -0.0922

0.5 -0.0074 -0.0966

0.55 -0.0079 -0.0989

0.6 -0.0081 -0.0993

0.65 -0.0083 -0.0992

0.7 -0.0085 -0.0998

0.75 -0.0089 -0.1015

0.8 -0.0094 -0.1038

0.85 -0.01 -0.1066

0.9 -0.0109 -0.1101

0.95 -0.0119 -0.1147

1.0 -0.0139 -0.1188

These results suggest that there is a small but nearly insignificant negative bias in

Intrade prediction markets over the extremely short term. None of the signal to noise

ratios are large enough to demonstrate inconsistency with the behavior of a Bayesian

agent.

A second and more sophisticated test would involve increasing the size of k or q.

Suppose two prediction market prices observed a week apart. What bias might result in

price movements a month out (k = 28)?
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The results of this test are displayed in two separate tables. The first corresponds

to the values of µ, and the second corresponds to the values of the signal to noise ratio.

Prices at the start of the week are plotted on the x-axis, and prices at the end of the

week are plotted on the y-axis.

D 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.0285 0.0301 0.0697 0.1809 0.2755 0.3475 0.4406 0.5765 0.6827 0.7089 0.75

0.1 0.0241 -0.0006 -0.0041 -0.0033 0.0134 0.077 0.1886 0.3624 0.536 0.6717 0.75

0.2 0.0009 -0.0065 -0.0097 -0.0118 -0.013 -0.01 0.003 0.0278 0.0919 0.2744 0.75

0.3 -0.0301 -0.0129 -0.0131 -0.0141 -0.0145 -0.0142 -0.0147 -0.0199 -0.0151 0.0227 0.75

0.4 -0.055 -0.0309 -0.0171 -0.0154 -0.0146 -0.0142 -0.015 -0.0199 -0.0274 -0.0034 0.7498

0.5 -0.0753 -0.0709 -0.0275 -0.0184 -0.0153 -0.0143 -0.015 -0.0179 -0.022 -0.0122 0.0104

0.6 -0.0762 -0.0892 -0.0612 -0.0268 -0.0175 -0.0156 -0.016 -0.0175 -0.019 -0.014 -0.0217

0.7 -0.0604 -0.0784 -0.1094 -0.05 -0.0267 -0.0199 -0.0183 -0.0184 -0.018 -0.0153 -0.0217

0.8 -0.0564 -0.0687 -0.138 -0.1051 -0.0753 -0.0403 -0.0246 -0.0197 -0.017 -0.0156 -0.0217

0.9 -0.0792 -0.0841 -0.1497 -0.1585 -0.1961 -0.1786 -0.0573 -0.0227 -0.0177 -0.0164 -0.0217

1.0 -0.0909 -0.0909 -0.0909 -0.0909 -0.0909 -0.0256 -0.0217 -0.0217 -0.0217 -0.0217 -0.0217

D 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.2217 0.2401 0.5239 1.035 1.1812 1.2725 1.4862 1.9144 2.1247 1.8967 1.7321

0.1 0.1955 -0.0106 -0.0623 -0.0391 0.1002 0.3485 0.62 0.9816 1.3404 1.69 1.7321

0.2 0.0075 -0.0927 -0.1184 -0.1251 -0.1194 -0.076 0.0176 0.1243 0.3009 0.6241 1.7321

0.3 -0.1968 -0.1351 -0.133 -0.1311 -0.1237 -0.1103 -0.1005 -0.1104 -0.0642 0.0762 1.7321

0.4 -0.2808 -0.2092 -0.1423 -0.1277 -0.1176 -0.1105 -0.1102 -0.1282 -0.1323 -0.0121 1.731

0.5 -0.3397 -0.3286 -0.1751 -0.1331 -0.1157 -0.1094 -0.1127 -0.1256 -0.1301 -0.0537 0.0456

0.6 -0.3379 -0.3801 -0.2875 -0.1612 -0.1228 -0.1156 -0.1199 -0.1266 -0.1275 -0.0827 -0.1489

0.7 -0.2752 -0.3369 -0.4377 -0.2377 -0.161 -0.1369 -0.1317 -0.1326 -0.13 -0.1123 -0.1489

0.8 -0.2519 -0.2943 -0.5231 -0.4046 -0.3157 -0.2156 -0.1609 -0.1426 -0.1313 -0.1263 -0.1489

0.9 -0.3123 -0.3297 -0.5494 -0.506 -0.5454 -0.5104 -0.2703 -0.1644 -0.142 -0.1365 -0.1489

1.0 -0.3162 -0.3162 -0.3162 -0.3162 -0.3162 -0.162 -0.1489 -0.1489 -0.1489 -0.1489 -0.1489

The results of this test show stronger violations of equation (1). As prices at the

start and end of the week drift toward either 0 or 1, clear biases start to emerge. The

bias is minor if both prices are near 0 or 1, and grows stronger if one price is near 0 and

the other near 1. The former situation should occur if a prediction market is “almost

certain” about its beliefs, and fails to encounter contrary evidence over the course of a

week. The latter situation should occur if, within that week, a prediction market

receives highly unexpected evidence that causes it to sharply reevaluate its own beliefs.

Conclusion

Prediction markets appear to behave the least like Bayesian agents when updating

in response to unexpected evidence, or when they grow strongly confident in a specific

conclusion. Prediction markets’ behavior is more consistent with that of a Bayesian
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agent when neither of these conditions hold.

The methods used here are not intended as a substitute for calibration analysis.

As a consequence, the above results are not a strong indicator that prediction markets

become unreliable forecasters when the conditions for non-Bayesian behavior occur.

However, they should caution against interpreting prediction market prices as the

probabilistic beliefs of a Bayesian agent in such circumstances.
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